Twitter-Snowflake,64位自增ID算法详解
简单介绍几种 ID 生成算法
1)Twitter 的 Snowflake(又名“雪花算法”)
2)UUID/GUID(一般应用程序和数据库均支持,32位十六进制,例如:"550e8400-e29b-41d4-a716-446655440000")
3)MongoDB ObjectID(类似 UUID 的方式,12个字节24位十六进制,例如:"507f1f77bcf86cd799439011")
4)Flickr Ticket Server(数据库生成方式,雅虎 Flickr 技术团队采用的就是这种方式)
其中,Twitter 的 Snowflake 算法是笔者近几年在分布式系统项目中使用最多的,未发现重复或并发的问题。
Twitter-Snowflake,64位自增ID算法
1、背景
Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,
每条消息都必须分配一条唯一的id,
这些id还需要一些大致的顺序(方便客户端排序),
并且在分布式系统中不同机器产生的id必须不同。
2、Snowflake算法核心
Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字,组成部分:
1)第一位未使用,保留备用
2)接下来41位是毫秒级时间戳,41位的长度可以表示69年的时间
2^41 =(1L<<41)= 2.2*10^12/(1000ms*3600*24*365)=69年
3)5位datacenterId,5位workerId,共10位的长度最多支持部署1024个节点( 2^10 = 1024 )
4)最后12位是毫秒内的计数,12位的计数顺序号支持每个节点每毫秒产生4096个ID序列
Twitter的snowflake算法把时间戳,工作机器id,序列号组合在一起。
这样的好处是:
1)毫秒数在高位,生成的ID整体上按时间趋势递增,解决了 hash(UUID)不连续的存储的跨页问题;
2)不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;
3)可根据自身业务灵活分配bit位。
不足就在于:强依赖机器时钟(毫秒数),如果时钟回拨,则可能导致生成ID重复。
除了最高位bit标记为不可用以外,其余三组bit占位均可浮动,看具体的业务需求而定。默认情况下41bit的时间戳可以支持该算法使用到2082年,10bit的工作机器id可以支持1023台机器,序列号支持1毫秒产生4095个自增序列id。
2.1 Snowflake – 时间戳
这里时间戳的细度是毫秒级,具体代码如下,建议使用64位linux系统机器,
因为有vdso,gettimeofday()在用户态就可以完成操作,减少了进入内核态的损耗。
uint64_t generateStamp() { timeval tv; gettimeofday(&tv, 0); return (uint64_t)tv.tv_sec * 1000 + (uint64_t)tv.tv_usec / 1000; }
默认情况下有41个bit可以供使用,那么一共有T(1llu << 41)毫秒供你使用分配,
年份 = T / (3600 * 24 * 365 * 1000) = 69.7年。
如果你只给时间戳分配39个bit使用,那么根据同样的算法最后年份 = 17.4年。
2. 2 Snowflake – 工作机器id
严格意义上来说这个bit段的使用可以是进程级,机器级的话你可以使用MAC地址来唯一标示工作机器,工作进程级可以使用IP+Path来区分工作进程。如果工作机器比较少,可以使用配置文件来设置这个id是一个不错的选择,如果机器过多配置文件的维护是一个灾难性的事情。
这里的解决方案是需要一个工作id分配的进程,可以使用自己编写一个简单进程来记录分配id,或者利用Mysql auto_increment机制也可以达到效果。
工作进程与工作id分配器只是在工作进程启动的时候交互一次,然后工作进程可以自行将分配的id数据落文件,下一次启动直接读取文件里的id使用。
PS:这个工作机器id的bit段也可以进一步拆分,比如用前5个bit标记进程id,后5个bit标记线程id之类:D
2.3 Snowflake – 序列号
序列号就是一系列的自增id(多线程建议使用atomic),为了处理在同一毫秒内需要给多条消息分配id,若同一毫秒把序列号用完了,则“等待至下一毫秒”。
uint64_t waitNextMs(uint64_t lastStamp) { uint64_t cur = 0; do { cur = generateStamp(); } while (cur <= lastStamp); return cur; }
总体来说,是一个很高效很方便的GUID产生算法,一个int64_t字段就可以胜任,不像现在主流128bit的GUID算法,即使无法保证严格的id序列性,但是对于特定的业务,比如用做游戏服务器端的GUID产生会很方便。另外,在多线程的环境下,序列号使用atomic可以在代码实现上有效减少锁的密度。
3、Snowflake - 算法实现(Java)
public class IdWorker { private final long twepoch = 1288834974657L; private final long workerIdBits = 5L; private final long datacenterIdBits = 5L; private final long maxWorkerId = -1L ^ (-1L << workerIdBits); private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); private final long sequenceBits = 12L; private final long workerIdShift = sequenceBits; private final long datacenterIdShift = sequenceBits + workerIdBits; private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final long sequenceMask = -1L ^ (-1L << sequenceBits); private long workerId; private long datacenterId; private long sequence = 0L; private long lastTimestamp = -1L; public IdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } public synchronized long nextId() { long timestamp = timeGen(); if (timestamp < lastTimestamp) { throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0L; } lastTimestamp = timestamp; return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; } protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } protected long timeGen() { return System.currentTimeMillis(); } public static void main(String[] args) { IdWorker idWorker = new IdWorker(0, 0); for (int i = 0; i < 100; i++) { long id = idWorker.nextId(); System.out.println(id); } } }
Twitter 分布式自增ID算法Snowflake
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先UUID相对比较长,另外UUID一般是无序的。
有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
10---0000000000
在上面的字符串中:
1)第一位为未使用(实际上也可作为long的符号位)
2)接下来的41位为毫秒级时间,
3)然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
4)然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
Java 版本的源码
/** * Twitter_Snowflake<br> * SnowFlake的结构如下(每部分用-分开):<br> * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br> * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br> * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br> * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br> * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br> * 加起来刚好64位,为一个Long型。<br> * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 */ public class SnowflakeIdWorker { // ==============================Fields=========================================== /** 开始时间截 (2015-01-01) */ private final long twepoch = 1420041600000L; /** 机器id所占的位数 */ private final long workerIdBits = 5L; /** 数据标识id所占的位数 */ private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */ private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */ private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */ private final long sequenceBits = 12L; /** 机器ID向左移12位 */ private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */ private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */ private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */ private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */ private long workerId; /** 数据中心ID(0~31) */ private long datacenterId; /** 毫秒内序列(0~4095) */ private long sequence = 0L; /** 上次生成ID的时间截 */ private long lastTimestamp = -1L; //==============================Constructors===================================== /** * 构造函数 * @param workerId 工作ID (0~31) * @param datacenterId 数据中心ID (0~31) */ public SnowflakeIdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } // ==============================Methods========================================== /** * 获得下一个ID (该方法是线程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 if (timestamp < lastTimestamp) { throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } //如果是同一时间生成的,则进行毫秒内序列 if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; //毫秒内序列溢出 if (sequence == 0) { //阻塞到下一个毫秒,获得新的时间戳 timestamp = tilNextMillis(lastTimestamp); } } //时间戳改变,毫秒内序列重置 else { sequence = 0L; } //上次生成ID的时间截 lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID return ((timestamp - twepoch) << timestampLeftShift) // | (datacenterId << datacenterIdShift) // | (workerId << workerIdShift) // | sequence; } /** * 阻塞到下一个毫秒,直到获得新的时间戳 * @param lastTimestamp 上次生成ID的时间截 * @return 当前时间戳 */ protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } /** * 返回以毫秒为单位的当前时间 * @return 当前时间(毫秒) */ protected long timeGen() { return System.currentTimeMillis(); } //==============================Test============================================= /** 测试 */ public static void main(String[] args) { SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0); for (int i = 0; i < 1000; i++) { long id = idWorker.nextId(); System.out.println(Long.toBinaryString(id)); System.out.println(id); } } }
github: https://github.com/twitter-archive/snowflake
参考推荐:
美团点评分布式ID生成系统 Leaf (推荐)
数据库分库分表解决方案汇总 (推荐)
版权所有: 本文系米扑博客原创、转载、摘录,或修订后发表,最后更新于 2021-02-23 05:32:47
侵权处理: 本个人博客,不盈利,若侵犯了您的作品权,请联系博主删除,莫恶意,索钱财,感谢!