【leetcode】DivideTwoIntegers
2,556 views
0
Question :
Divide two integers without using multiplication, division and mod operator.
Anwser 1 :
class Solution { public: int divide(int dividend, int divisor) { // Start typing your C/C++ solution below // DO NOT write int main() function int ret = 0; if(dividend == 0 || divisor == 0) return 0; int sign = 1; // 1 : positive; -1 : negative if(dividend < 0) sign *= -1; if(divisor < 0) sign *= -1; long long tmpDiv = dividend; long long divL = abs(tmpDiv); long long tmpDivisor = divisor; long long divisorL = abs(tmpDivisor); while(divL >= divisorL){ int count = 1; // first: divL > divisorL long long sum = divisorL; // long long, cal divisorL while(sum + sum <= divL){ count += count; sum += sum; } divL -= sum; ret += count; } return sign * ret; } };
注意点:
1) 原理:累加除数,判断是否大于被除数
2) 设置符号位sign,判断符号
3) 对dividend和divisor都先转化成long long类型,防止负数转化成正整数时溢出
4) 除数之和sum,必须设置成long long,防止溢出(同2)
Anwser 2 :
class Solution { public: int divide(int dividend, int divisor) { // Start typing your C/C++ solution below // DO NOT write int main() function long long a = dividend; long long b = divisor; int sign = 1; if(a < 0){ a = -a; sign *= -1; } if(b < 0){ b = -b; sign *= -1; } int d = 0; while ( (b << d) <= a ) { ++d; } --d; int res = 0; for (int i = d; i >= 0; --i) { if ( (b << i) <= a ) { res += (1 << i); // high to low a -= (b << i); // remaider } } return sign * res; } };
Anwser 3:
class Solution { private: long long f[100]; public: int bsearch(long long a[], int left, int right, long long key) { if (left > right) return -1; int mid = left + (right - left) / 2; if (a[mid] == key) return mid; else if (a[mid] < key) { int pos = bsearch(a, mid + 1, right, key); return pos == -1 ? mid : pos; } else { return bsearch(a, left, mid - 1, key); } } int divide(int dividend, int divisor) { // Start typing your C/C++ solution below // DO NOT write int main() function int sign = dividend < 0 ? -1 : 1; if (divisor < 0) sign *= -1; long long div = dividend; div = abs(div); long long divisorL = divisor; divisorL = abs(divisorL); f[0] = divisorL; int size = 1; while(true) { if (f[size-1] >= div) break; f[size] = f[size-1] + f[size-1]; size++; } int num = 0; long long sum = 0; while(div > 0) { int pos = bsearch(f, 0, size - 1, div); if (pos == -1) break; div -= f[pos]; num += (1 << pos); } return num * sign; } };
版权所有: 本文系米扑博客原创、转载、摘录,或修订后发表,最后更新于 2013-04-20 10:21:24
侵权处理: 本个人博客,不盈利,若侵犯了您的作品权,请联系博主删除,莫恶意,索钱财,感谢!